School of Physics and Astronomy, Shanghai Jiao Tong University, State Key Laboratory of Dark Matter Physics, Shanghai Jiao Tong University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University
Abstract:Deeply stacked KANs are practically impossible due to high training difficulties and substantial memory requirements. Consequently, existing studies can only incorporate few KAN layers, hindering the comprehensive exploration of KANs. This study overcomes these limitations and introduces the first fully KA-based deep model, demonstrating that KA-based layers can entirely replace traditional architectures in deep learning and achieve superior learning capacity. Specifically, (1) the proposed Share-activation KAN (SaKAN) reformulates Sprecher's variant of Kolmogorov-Arnold representation theorem, which achieves better optimization due to its simplified parameterization and denser training samples, to ease training difficulty, (2) this paper indicates that spline gradients contribute negligibly to training while consuming huge GPU memory, thus proposes the Grad-Free Spline to significantly reduce memory usage and computational overhead. (3) Building on these two innovations, our ALL U-KAN is the first representative implementation of fully KA-based deep model, where the proposed KA and KAonv layers completely replace FC and Conv layers. Extensive evaluations on three medical image segmentation tasks confirm the superiority of the full KA-based architecture compared to partial KA-based and traditional architectures, achieving all higher segmentation accuracy. Compared to directly deeply stacked KAN, ALL U-KAN achieves 10 times reduction in parameter count and reduces memory consumption by more than 20 times, unlocking the new explorations into deep KAN architectures.
Abstract:Advancing complex reasoning in large language models relies on high-quality, verifiable datasets, yet human annotation remains cost-prohibitive and difficult to scale. Current synthesis paradigms often face a recurring trade-off: maintaining structural validity typically restricts problem complexity, while relaxing constraints to increase difficulty frequently leads to inconsistent or unsolvable instances. To address this, we propose Agentic Proposing, a framework that models problem synthesis as a goal-driven sequential decision process where a specialized agent dynamically selects and composes modular reasoning skills. Through an iterative workflow of internal reflection and tool-use, we develop the Agentic-Proposer-4B using Multi-Granularity Policy Optimization (MGPO) to generate high-precision, verifiable training trajectories across mathematics, coding, and science. Empirical results demonstrate that downstream solvers trained on agent-synthesized data significantly outperform leading baselines and exhibit robust cross-domain generalization. Notably, a 30B solver trained on only 11,000 synthesized trajectories achieves a state-of-the-art 91.6% accuracy on AIME25, rivaling frontier-scale proprietary models such as GPT-5 and proving that a small volume of high-quality synthetic signals can effectively substitute for massive human-curated datasets.
Abstract:Multimodal Large Language Models (MLLMs) have significantly advanced vision-language understanding. However, even state-of-the-art models struggle with geometric reasoning, revealing a critical bottleneck: the extreme scarcity of high-quality image-text pairs. Human annotation is prohibitively expensive, while automated methods fail to ensure fidelity and training effectiveness. Existing approaches either passively adapt to available images or employ inefficient random exploration with filtering, decoupling generation from learning needs. We propose Socratic-Geo, a fully autonomous framework that dynamically couples data synthesis with model learning through multi-agent interaction. The Teacher agent generates parameterized Python scripts with reflective feedback (Reflect for solvability, RePI for visual validity), ensuring image-text pair purity. The Solver agent optimizes reasoning through preference learning, with failure paths guiding Teacher's targeted augmentation. Independently, the Generator learns image generation capabilities on accumulated "image-code-instruction" triplets, distilling programmatic drawing intelligence into visual generation. Starting from only 108 seed problems, Socratic-Solver achieves 49.11 on six benchmarks using one-quarter of baseline data, surpassing strong baselines by 2.43 points. Socratic-Generator achieves 42.4% on GenExam, establishing new state-of-the-art for open-source models, surpassing Seedream-4.0 (39.8%) and approaching Gemini-2.5-Flash-Image (43.1%).
Abstract:Recent work shows that linear models can outperform several transformer models in long-term time-series forecasting (TSF). However, instead of explicitly performing temporal interaction through self-attention, linear models implicitly perform it based on stacked MLP structures, which may be insufficient in capturing the complex temporal dependencies and their performance still has potential for improvement. To this end, we propose a Lightweight Sparse Interaction Network (LSINet) for TSF task. Inspired by the sparsity of self-attention, we propose a Multihead Sparse Interaction Mechanism (MSIM). Different from self-attention, MSIM learns the important connections between time steps through sparsity-induced Bernoulli distribution to capture temporal dependencies for TSF. The sparsity is ensured by the proposed self-adaptive regularization loss. Moreover, we observe the shareability of temporal interactions and propose to perform Shared Interaction Learning (SIL) for MSIM to further enhance efficiency and improve convergence. LSINet is a linear model comprising only MLP structures with low overhead and equipped with explicit temporal interaction mechanisms. Extensive experiments on public datasets show that LSINet achieves both higher accuracy and better efficiency than advanced linear models and transformer models in TSF tasks. The code is available at the link https://github.com/Meteor-Stars/LSINet.
Abstract:Large language models are increasingly evaluated as interactive agents, yet standard agent benchmarks conflate two qualitatively distinct sources of success: semantic tool-use and interface-specific interaction pattern memorization. Because both mechanisms can yield identical task success on the original interface, benchmark scores alone are not identifiable evidence of environment-invariant capability. We propose PIPE, a protocol-level evaluation augmentation for diagnosing interface reliance by minimally rewriting environment interfaces while preserving task semantics and execution behavior. Across 16 environments from AgentBench and AgentGym and a range of open-source and API-based agents, PIPE reveals that trajectory-SFT substantially amplifies interface shortcutting: trained agents degrade sharply under minimal interface rewrites, while non-trajectory-trained models remain largely stable. We further introduce Interface Reliance (IR), a counterbalanced alias-based metric that quantifies preference for training-time interfaces, and show that interface shortcutting exhibits environment-dependent, non-monotonic training dynamics that remain invisible under standard evaluation. Our code is available at https://anonymous.4open.science/r/What-Do-Agents-Learn-from-Trajectory-SFT-Semantics-or-Interfaces--0831/.
Abstract:We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.
Abstract:Reinforcement Learning (RL) serves as a potent paradigm for enhancing reasoning capabilities in Large Language Models (LLMs), yet standard outcome-based approaches often suffer from reward sparsity and inefficient credit assignment. In this paper, we propose a novel framework designed to provide continuous reward signals, which introduces a Step-wise Marginal Information Gain (MIG) mechanism that quantifies the intrinsic value of reasoning steps against a Monotonic Historical Watermark, effectively filtering out training noise. To ensure disentangled credit distribution, we implement a Decoupled Masking Strategy, applying process-oriented rewards specifically to the chain-of-thought (CoT) and outcome-oriented rewards to the full completion. Additionally, we incorporate a Dual-Gated SFT objective to stabilize training with high-quality structural and factual signals. Extensive experiments across textual and multi-modal benchmarks (e.g., MATH, Super-CLEVR) demonstrate that our approach consistently outperforms baselines such as GRPO in both sample efficiency and final accuracy. Furthermore, our model exhibits superior out-of-distribution robustness, demonstrating promising zero-shot transfer capabilities to unseen and challenging reasoning tasks.
Abstract:The density-distribution method has recently become a promising paradigm owing to its adaptability to variations in swarm size. However, existing studies face practical challenges in achieving complex shape representation and decentralized implementation. This motivates us to develop a fully decentralized, distribution-based control strategy with the dual capability of forming complex shapes and adapting to swarm-size variations. Specifically, we first propose a discrete mass-distribution function defined over a set of sample points to model swarm formation. In contrast to the continuous density-distribution method, our model eliminates the requirement for defining continuous density functions-a task that is difficult for complex shapes. Second, we design a decentralized meanshift control law to coordinate the swarm's global distribution to fit the sample-point distribution by feeding back mass estimates. The mass estimates for all sample points are achieved by the robots in a decentralized manner via the designed mass estimator. It is shown that the mass estimates of the sample points can asymptotically converge to the true global values. To validate the proposed strategy, we conduct comprehensive simulations and real-world experiments to evaluate the efficiency of complex shape formation and adaptability to swarm-size variations.
Abstract:With the remarkable success of large language models (LLMs) in natural language understanding and generation, multimodal large language models (MLLMs) have rapidly advanced in their ability to process data across multiple modalities. While most existing efforts focus on scaling up language models or constructing higher-quality training data, limited attention has been paid to effectively integrating cross-modal knowledge into the language space. In vision-language models, for instance, aligning modalities using only high-level visual features often discards the rich semantic information present in mid- and low-level features, limiting the model's ability of cross-modality understanding. To address this issue, we propose SparseCut, a general cross-modal fusion architecture for MLLMs, introducing sparse shortcut connections between the cross-modal encoder and the LLM. These shortcut connections enable the efficient and hierarchical integration of visual features at multiple levels, facilitating richer semantic fusion without increasing computational overhead. We further introduce an efficient multi-grained feature fusion module, which performs the fusion of visual features before routing them through the shortcuts. This preserves the original language context and does not increase the overall input length, thereby avoiding an increase in computational complexity for the LLM. Experiments demonstrate that SparseCut significantly enhances the performance of MLLMs across various multimodal benchmarks with generality and scalability for different base LLMs.
Abstract:Recent large language models (LLMs) achieve near-saturation accuracy on many established mathematical reasoning benchmarks, raising concerns about their ability to diagnose genuine reasoning competence. This saturation largely stems from the dominance of template-based computation and shallow arithmetic decomposition in existing datasets, which underrepresent reasoning skills such as multi-constraint coordination, constructive logical synthesis, and spatial inference. To address this gap, we introduce ReasoningMath-Plus, a benchmark of 150 carefully curated problems explicitly designed to evaluate structural reasoning. Each problem emphasizes reasoning under interacting constraints, constructive solution formation, or non-trivial structural insight, and is annotated with a minimal reasoning skeleton to support fine-grained process-level evaluation. Alongside the dataset, we introduce HCRS (Hazard-aware Chain-based Rule Score), a deterministic step-level scoring function, and train a Process Reward Model (PRM) on the annotated reasoning traces. Empirically, while leading models attain relatively high final-answer accuracy (up to 5.8/10), HCRS-based holistic evaluation yields substantially lower scores (average 4.36/10, best 5.14/10), showing that answer-only metrics can overestimate reasoning robustness.